Treffer: Parallel distance-k coloring algorithms for numerical optimization

Title:
Parallel distance-k coloring algorithms for numerical optimization
Source:
Euro-Par 2002 : parallel processing (Paderborn, 27-30 August 2002)Lecture notes in computer science. :912-921
Publisher Information:
Berlin: Springer, 2002.
Publication Year:
2002
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Organisation des mémoires. Traitement des données, Memory organisation. Data processing, Gestion des mémoires et des fichiers (y compris la protection et la sécurité des fichiers), Memory and file management (including protection and security), Algorithme numérique, Numerical algorithm, Algoritmo numérico, Algorithme parallèle, Parallel algorithm, Algoritmo paralelo, Algorithme réparti, Distributed algorithm, Algoritmo repartido, Analyse algorithme, Algorithm analysis, Análisis algoritmo, Coloration graphe, Graph colouring, Coloración grafo, Dimensionnement, Dimensioning, Dimensionamiento, Graphe linéaire, Linear graph, Grafo lineal, Matrice Jacobi, Jacobi matrix, Matriz Jacobi, Mémoire partagée, Shared memory, Memoria compartida, Mémoire répartie, Distributed memory, Optimisation, Optimization, Optimización, Randomisation, Randomization, Aleatorización, Temps exécution, Execution time, Tiempo ejecución
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Informatics, University of Bergen, 5020 Bergen, Norway
Computer Science Department, Old Dominion University, Norfolk, VA 23529, United States
CSRI, Sandia National Labs, Albuquerque NM 87185 USA, ICASE, NASA Langley Research Center, Hampton, VA 23681-2199, United States
ISSN:
0302-9743
Rights:
Copyright 2003 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.14511471
Database:
PASCAL Archive

Weitere Informationen

Matrix partitioning problems that arise in the efficient estimation of sparse Jacobians and Hessians can be modeled using variants of graph coloring problems. In a previous work [6], we argue that distance-2 and distance-3/2 graph coloring are robust and flexible formulations of the respective matrix estimation problems. The problem size in large-scale optimization contexts makes the matrix estimation phase an expensive part of the entire computation both in terms of execution time and memory space. Hence, there is a need for both shared-and distributed-memory parallel algorithms for the stated graph coloring problems. In the current work, we present the first practical shared address space parallel algorithms for these problems. The main idea in our algorithms is to randomly partition the vertex set equally among the available processors, let each processor speculatively color its vertices using information about already colored vertices, detect eventual conflicts in parallel, and finally re-color conflicting vertices sequentially. Randomization is also used in the coloring phases to further reduce conflicts. Our PRAM-analysis shows that the algorithms should give almost linear speedup for sparse graphs that are large relative to the number of processors. Experimental results from our OpenMP implementations on a Cray Origin2000 using various large graphs show that the algorithms indeed yield reasonable speedup for modest numbers of processors.