Treffer: Crack identification using evolutionary algorithms in parallel computing environment

Title:
Crack identification using evolutionary algorithms in parallel computing environment
Source:
Journal of sound and vibration. 262(1):141-160
Publisher Information:
London: Elsevier, 2003.
Publication Year:
2003
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Subject Terms:
Civil engineering, Génie civil, Mechanical engineering, Génie mécanique, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des solides, Solid mechanics, Mécanique des structures et des milieux continus, Structural and continuum mechanics, Vibration, onde mécanique, stabilité dynamique (aéroélasticité, contrôle vibration...), Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...), Méthodes de mesure et d'essai, Measurement and testing methods, Vibrations and mechanical waves, Measurement methods and techniques in continuum mechanics of solids, Algorithme génétique, Genetic algorithm, Algoritmo genético, Algorithme parallèle, Parallel algorithm, Algoritmo paralelo, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Analyse structurale, Structural analysis, Análisis estructural, Calcul réparti, Distributed computing, Cálculo repartido, Caractérisation défaut, Defect characterization, Caracterización defecto, Essai vibration, Vibration test, Ensayo vibración, Fissure, Crack, Fisura, Fréquence propre, Natural frequency, Frecuencia propia, Identification système, System identification, Identificación sistema, Localisation, Localization, Localización, Mesure, Measurement, Medida, Modélisation, Modeling, Modelización, Méthode numérique, Numerical method, Método numérico, Méthode élément fini, Finite element method, Método elemento finito, Problème inverse, Inverse problem, Problema inverso, Profondeur fissure, Crack depth, Profundidad fisura
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
School of Mechanical Engineering, SungKyunKwan University, Jangan-Gu, Suwon, Kyoungki-Do, 440-746, Korea, Republic of
ISSN:
0022-460X
Rights:
Copyright 2003 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: solid mechanics
Accession Number:
edscal.14652636
Database:
PASCAL Archive

Weitere Informationen

It is well known that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identity the location and depth of a crack in a structure, classical optimization technique was adopted by previous researchers. That technique overcame the difficulty of finding the intersection point of the superposed contours that correspond to the eigenfrequency caused by the crack presence. However, it is hard to select the trial solution initially for optimization because the defined objective function has heavily local minima. A method is presented in this paper which uses a continuous evolutionary algorithm (CEA), which is suitable for solving inverse problems and implemented on PC clusters to shorten calculation time. With finite element model of the structure to calculate eigenfrequencies, it is possible to formulate the inverse problem in optimization format. CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising with high parallel efficiency over about 91%.