Treffer: Multiobjective Evolutionary algorithm for the optimization of noisy combustion processes

Title:
Multiobjective Evolutionary algorithm for the optimization of noisy combustion processes
Source:
IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews. 32(4):460-473
Publisher Information:
New-York, NY: Institute of Electrical and Electronics Engineers, 2002.
Publication Year:
2002
Physical Description:
print, 27 ref
Original Material:
CRAN
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Optimisation. Problèmes de recherche, Optimization. Search problems, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Automatique théorique. Systèmes, Control theory. Systems, Divers, Miscellaneous, Algorithme génétique, Genetic algorithm, Algoritmo genético, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Bruit, Noise, Ruido, Combustion, Combustión, Disponibilité, Availability, Disponibilidad, Emission, Emisión, Fonction objectif, Objective function, Función objetivo, Instabilité, Instability, Inestabilidad, Modélisation, Modeling, Modelización, Méthode numérique, Numerical method, Método numérico, Méthode optimisation, Optimization method, Método optimización, Observation aberrante, Outlier, Observación aberrante, Optimisation, Optimization, Optimización, Optimum Pareto, Pareto optimum, Optimo Pareto, Programmation multiobjectif, Multiobjective programming, Programación multiobjetivo, Robustesse, Robustness, Robustez, Réduction, Reduction, Reducción
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Institute of Computational Science, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
Alstom Power Technology, Segelhof, 5405 Dättwil, Switzerland
University of Applied Sciences Solothurn, Northwestern Switzerland, Olten, Switzerland
ISSN:
1094-6977
Rights:
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics

Operational research. Management
Accession Number:
edscal.14666211
Database:
PASCAL Archive

Weitere Informationen

Evolutionary Algorithms have been applied to single and multiple objectives optimization problems, with a strong emphasis on problems, solved through numerical simulations. However in several engineering problems, there is limited availability of suitable models and there is need for optimization of realistic or experimental configurations. The multiobjective optimization of an experimental set-up is addressed in this work. Experimental setups present a number of challenges to any optimization technique including: availability only of pointwise information, experimental noise in the objective function, uncontrolled changing of environmental conditions and measurement failure. This work introduces a multiobjective evolutionary algorithm capable of handling noisy problems with a particular emphasis on robustness against unexpected measurements (outliers). The algorithm is based on the Strength Pareto Evolutionary Algorithm (SPEA) of Zitzler and Thiele and includes the new concepts of domination dependent lifetime, reevaluation of solutions and modifications in the update of the archive population. Several tests on prototypical functions underline the improvements in convergence speed and robustness of the extended algorithm. The proposed algorithm is implemented to the Pareto optimization of the combustion process of a stationary gas turbine in an industrial setup. The Pareto front is constructed for the objectives of minimization of NOx emissions and reduction of the pressure fluctuations (pulsation) of the flame. Both objectives are conflicting affecting the environment and the lifetime of the turbine, respectively. The optimization leads a Pareto front corresponding to reduced emissions and pulsation of the burner. The physical implications of the solutions are discussed and the algorithm is evaluated.