Treffer: The multiple-try method and local optimization in metropolis sampling

Title:
The multiple-try method and local optimization in metropolis sampling
Source:
Journal of the American Statistical Association. 95(449):121-134
Publisher Information:
Alexandria, VA: American Statistical Association, 2000.
Publication Year:
2000
Physical Description:
print, 22 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Statistics, Stanford University, Stanford, CA 94305, United States
Department of Statistics and Applied Probability, the National University of Singapore, Singapore 119260, Singapore
Department of Statistics, University of California, Los Angeles, CA 90095, United States
ISSN:
0162-1459
Rights:
Copyright 2000 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.1485268
Database:
PASCAL Archive

Weitere Informationen

This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this transition rule together with adaptive direction sampling, we propose a novel method for incorporating local optimization steps into a MCMC sampler in continuous state-space. Numerical studies show that the new method performs significantly better than the traditional Metropolis-Hastings (M-H) sampler. With minor tailoring in using the rule, the multiple-try method can also be exploited to achieve the effect of a griddy Gibbs sampler without having to bear with griddy approximations, and the effect of a hit-and-run algorithm without having to figure out the required conditional distribution in a random direction.