Result: Ensemble techniques for parallel Genetic Programming based classifiers

Title:
Ensemble techniques for parallel Genetic Programming based classifiers
Source:
Genetic programming (Essex, 14-16 April 2003)Lecture notes in computer science. :59-69
Publisher Information:
Berlin: Springer, 2003.
Publication Year:
2003
Physical Description:
print, 23 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
ICAR-CNR, c/o DEIS, Univ. della Calabria, 87036 Rende (CS), Italy
ISSN:
0302-9743
Rights:
Copyright 2003 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.14934037
Database:
PASCAL Archive

Further Information

An extension of Cellular Genetic Programming for data classification to induce an ensemble of predictors is presented. Each classifier is trained on a different subset of the overall data, then they are combined to classify new tuples by applying a simple majority voting algorithm, like bagging. Preliminary results on a large data set show that the ensemble of classifiers trained on a sample of the data obtains higher accuracy than a single classifier that uses the entire data set at a much lower computational cost.