Treffer: Gödel logics and cantor-bendixon analysis
Title:
Gödel logics and cantor-bendixon analysis
Authors:
Source:
LPAR 2002 : logic for programming, artificial intelligence, and reasoning (Tbilisi, 14-18 October 2002)Lecture notes in computer science. :327-336
Publisher Information:
Berlin: Springer, 2002.
Publication Year:
2002
Physical Description:
print, 7 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Algorithme parallèle, Parallel algorithm, Algoritmo paralelo, Logique ordre 1, First order logic, Lógica orden 1, Programmation logique, Logical programming, Programación lógica, Programmation parallèle, Parallel programming, Programación paralela, Structure topologique, Topological structure, Estructura topológica, Analyse Cantor Bendixon, Logique Gödel
Document Type:
Konferenz
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institute for Algebra and Computational Mathematics, University of Technology, Vienna, Austria
ISSN:
0302-9743
Rights:
Copyright 2003 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.14985554
Database:
PASCAL Archive
Weitere Informationen
This paper presents an analysis of Gödel logics with countable truth value sets with respect to the topological and order theoretic structure of the underlying truth value set. Gödel logics have taken an important rôle in various areas of computer science, e.g. logic programming and foundations of parallel computing. As shown in a forthcoming paper all these logics are not recursively axiomatizable. We show that certain topological properties of the truth value set can distinguish between various logics. Complete separation of a class of countable valued logics will be proven and direction for further separation results given.