Treffer: Discrete truncated powers and lattice points in rational polytope

Title:
Discrete truncated powers and lattice points in rational polytope
Source:
Proceedings of the 6th Japan-China Joint Seminar on Numerical Mathematics, University of Tsukuba, Japan, 5-9 August 2002 : In Search for the Frontier of Computational and Applied Mathematics toward the 21st CenturyJournal of computational and applied mathematics. 159(1):149-159
Publisher Information:
Amsterdam: Elsevier, 2003.
Publication Year:
2003
Physical Description:
print, 14 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institute of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
ISSN:
0377-0427
Rights:
Copyright 2003 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.15090866
Database:
PASCAL Archive

Weitere Informationen

Discrete truncate power is very useful for studying the number of nonnegative integer solutions of linear Diophantine equations. In this paper, some detail information about discrete truncated power is presented. To study the number of integer solutions of linear Diophantine inequations, the generalized truncated power and generalized discrete truncated power are defined and discussed, respectively. We use generalized discrete truncated powers and multivariate splines to investigate the lattice points in rational polytopes. In particular, we present the degree and period of multidimensional Ehrhart polynomial.