Treffer: On the number of hexagonal polyominoes

Title:
On the number of hexagonal polyominoes
Source:
Random generation of combinatorial objects and bijective combinatoricsTheoretical computer science. 307(2):433-453
Publisher Information:
Amsterdam: Elsevier, 2003.
Publication Year:
2003
Physical Description:
print, 28 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
ISSN:
0304-3975
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.15176393
Database:
PASCAL Archive

Weitere Informationen

A combination of the refined finite lattice method and transfer matrices allows a radical increase in the computer enumeration of polyominoes on the hexagonal lattice (equivalently, site clusters on the triangular lattice), pn with n hexagons. We obtain pn for n < 35. We prove that pn = τn+o(n), obtain the bounds 4.8049 ≤ τ ≤ 5.9047, and estimate that τ=5.1831478(17). Finally, we provide compelling numerical evidence that the generating function Σ pnzn A(z)log(1-τz), for z → (1/τ)- with A(z) holomorphic in a cut plane, estimate A(1/τ) and predict the sub-leading asymptotic behaviour, identifying a non-analytic correction-to-scaling term with exponent Δ=3/2. On the basis of universality and previous numerical work we argue that the mean-square radius of gyration <R2g>n of polyominoes of size n grows as n2v, with v = 0.64115(5).