Treffer: A new affine scaling interior point algorithm for nonlinear optimization subject to linear equality and inequality constraints
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Operational research. Management
Weitere Informationen
In this paper we propose a new interior affine scaling region algorithm with nonmonotonic interior point backtracking technique for nonlinear optimization subject to linear equality and inequality constraints. The trust region subproblem in the proposed algorithm is defined by minimizing a quadratic function subject only to an affine scaling ellipsoidal constraint in a null subspace of the extended equality constraints. Using both trust region strategy and line search technique, the affine scaling trust region subproblem at each iteration generates backtracking interior step to obtain a new accepted step. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases.