Treffer: Numerical solution of a parabolic equation with non-local boundary specifications
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Weitere Informationen
The parabolic partial differential equations with non-local boundary specifications model various physical problems. Numerical schemes are developed for obtaining approximate solutions to the initial boundary-value problem for one-dimensional second-order linear parabolic partial differential equation with non-local boundary specifications replacing boundary conditions. The method of lines semi-discretization approach will be used to transform the model partial differential equation into a system of first-order linear ordinary differential equations (ODEs). The spatial derivative in the PDE is approximated by a finite-difference approximation. The solution of the resulting system of first-order ODEs satisfies a recurrence relation which involves a matrix exponential function. Numerical techniques are developed by approximating the exponential matrix function in this recurrence relation. The new algorithms are tested on two problems from the literature. The central processor unit times needed are also considered.