Treffer: Numerical solution of a parabolic equation with non-local boundary specifications

Title:
Numerical solution of a parabolic equation with non-local boundary specifications
Authors:
Source:
Applied mathematics and computation. 145(1):185-194
Publisher Information:
New York, NY: Elsevier, 2003.
Publication Year:
2003
Physical Description:
print, 21 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Equations différentielles, Ordinary differential equations, Equations aux dérivées partielles, problèmes aux valeurs initiales et problèmes aux valeurs limites dépendant du temps, Partial differential equations, initial value problems and time-dependant initial-boundary value problems, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Algorithme parallèle, Parallel algorithm, Algoritmo paralelo, Approximant Padé, Padé approximant, Aproximante Pade, Equation différentielle, Differential equation, Ecuación diferencial, Equation dérivée partielle, Partial differential equation, Ecuación derivada parcial, Equation parabolique, Parabolic equation, Ecuación parabólica, Fonction exponentielle, Exponential function, Función exponencial, Fonction matricielle, Matrix function, Función matricial, Intégration numérique, Numerical integration, Integración numérica, Méthode différence finie, Finite difference method, Método diferencia finita, Méthode lignes, Method of lines, Método líneas, Méthode numérique, Numerical method, Método numérico, Problème valeur initiale, Initial value problem, Problema valor inicial, Problème valeur limite, Boundary value problem, Problema valor limite, Relation récurrence, Recurrence relation, Relación recurrencia, Solution numérique, Numerical solution, Théorie non locale, Non local theory, Teoría no local, Algorithme séquentiel, Sequential algorithm, Processeur central, Central processor
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424 Hafez Avenue, 15914 Tehran, Iran, Islamic Republic of
ISSN:
0096-3003
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.15455660
Database:
PASCAL Archive

Weitere Informationen

The parabolic partial differential equations with non-local boundary specifications model various physical problems. Numerical schemes are developed for obtaining approximate solutions to the initial boundary-value problem for one-dimensional second-order linear parabolic partial differential equation with non-local boundary specifications replacing boundary conditions. The method of lines semi-discretization approach will be used to transform the model partial differential equation into a system of first-order linear ordinary differential equations (ODEs). The spatial derivative in the PDE is approximated by a finite-difference approximation. The solution of the resulting system of first-order ODEs satisfies a recurrence relation which involves a matrix exponential function. Numerical techniques are developed by approximating the exponential matrix function in this recurrence relation. The new algorithms are tested on two problems from the literature. The central processor unit times needed are also considered.