Treffer: From linear to nonlinear iterative methods
Title:
From linear to nonlinear iterative methods
Authors:
Source:
5th IMACS Conference on Iterative Methods in Scientific Computing, 28-31 May, 2001, Heraklion, Crete (Greece)Applied numerical mathematics. 45(1):59-77
Publisher Information:
Amsterdam: Elsevier, 2003.
Publication Year:
2003
Physical Description:
print, 38 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Algèbre linéaire numérique, Numerical linear algebra, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Algèbre linéaire numérique, Numerical linear algebra, Algebra lineal numérica, Analyse numérique, Numerical analysis, Análisis numérico, Convergence méthode numérique, Convergence of numerical methods, Equation algébrique, Algebraic equation, Ecuación algebraica, Equation transcendante, Transcendental equation, Ecuación trascendente, Méthode itérative, Iterative method, Método iterativo, Optimisation sans contrainte, Unconstrained optimization, Optimización sin restricción, Réseau neuronal, Neural network, Red neuronal, Système linéaire, Linear system, Sistema lineal, Système non linéaire, Non linear system, Sistema no lineal
Document Type:
Konferenz
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, University of Patras, 26110 Patras, Greece
University of Patras Artificial Intelligence Research Center (UPAIRC), 26110 Patras, Greece
Department of Information Systems and Computing, Brunel University, Uxbridge UB8 3PH, United Kingdom
University of Patras Artificial Intelligence Research Center (UPAIRC), 26110 Patras, Greece
Department of Information Systems and Computing, Brunel University, Uxbridge UB8 3PH, United Kingdom
ISSN:
0168-9274
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.15459502
Database:
PASCAL Archive
Weitere Informationen
This paper constitutes an effort towards the generalization of the most common classical iterative methods used for the solution of linear systems (like Gauss-Seidel, SOR, Jacobi, and others) to the solution of systems of nonlinear algebraic and/or transcendental equations, as well as to unconstrained optimization of nonlinear functions. Convergence and experimental results are presented. The proposed algorithms have also been implemented and tested on classical test problems and on real-life artificial neural network applications and the results to date appear to be very promising.