Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: HLabelSOM: Automatic labelling of self organising maps toward hierarchical visualisation for information retrieval

Title:
HLabelSOM: Automatic labelling of self organising maps toward hierarchical visualisation for information retrieval
Authors:
Source:
AI 2003 : advances in artificial intelligence (Perth, 3-5 December 2003)Lecture notes in computer science. :532-543
Publisher Information:
Berlin: Springer, 2003.
Publication Year:
2003
Physical Description:
print, 16 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
University of South Australia, Mawson Lakes SA 5095, Australia
ISSN:
0302-9743
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.15509088
Database:
PASCAL Archive

Weitere Informationen

The self organising map technique is an unsupervised neural network that is able to cluster high-dimensional data and to display the clustered data on a two-dimensional map. However, without the help of a visualisation technique or labels assigned by an expert, users without some prior knowledge will find it difficult to understand the clusters on the map. In this paper, we present the HLabelSOM method to automatically label the self organising map by utilising the features the nodes on the map hold after the training process. Users will be able to see the clusters on the labelled map since the neighbouring nodes have similar features and the labels themselves reveal the cluster boundaries based on the common features held by neighbouring nodes. Further, the HLabelSOM method produces several maps that can be utilised to create hierarchical visualisation for information retrieval. We demonstrate the applicability of the HLabelSOM method in mining medical documents from the Internet and visualising the information in hierarchical maps.