Treffer: Implementing heterogeneous agents in dynamic environments, a case study in RoboCupRescue

Title:
Implementing heterogeneous agents in dynamic environments, a case study in RoboCupRescue
Source:
MATES 2003: multiagent system technologies (Erfurt, 22-25 September 2003)Lecture notes in computer science. :95-104
Publisher Information:
Berlin: Springer, 2003.
Publication Year:
2003
Physical Description:
print, 11 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran, Islamic Republic of
ISSN:
0302-9743
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.15690744
Database:
PASCAL Archive

Weitere Informationen

Design and construction of multi-agent systems is a challenging but an intriguing problem. It is because of the intrinsic distribution of the intelligent components. In such environments the interaction and communication between the constituent parts extends the complexity since appropriate coordination methods need to be designated and employed. In this paper a successful experiment in designing and implementing such an environment is presented 1. The test bed for this research is the rescue simulation environment. The architecture of the implemented heterogeneous agents takes advantage of various algorithms. These algorithms make the agents act intelligently by themselves albeit they happen to act quite in coordination with each other. The implemented algorithms for the sake of cooperation between the heterogeneous agents enhance the overall pay off of the system. The autonomy of the agents is guaranteed by means of some methods such as reinforcement learning, decision trees and some sort of heuristic functions. In order to settle the agents in coordination with each other and make them act cooperatively, some other methods have been applied. Among these methods, combinatorial auctions, coalition formation, function approximation for evaluating the value of cooperation, and some probabilistic and heuristic methods can be named.