Result: Subtyping constraints in quasi-lattices

Title:
Subtyping constraints in quasi-lattices
Source:
FST TCS 2003 : foundations of software technology and theoretical computer science (Mumbai, 15-17 December 2003)Lecture notes in computer science. :136-148
Publisher Information:
Berlin: Springer, 2003.
Publication Year:
2003
Physical Description:
print, 14 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
INRIA Rocquencourt, Projet Contraintes, BP 105, 78153 Le Chesnay, France
ISSN:
0302-9743
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.15692185
Database:
PASCAL Archive

Further Information

In this paper, we show the decidability and NP-completeness of the satisfiability problem for non-structural subtyping constraints in quasi-lattices. This problem, first introduced by Smolka in 1989, is important for the typing of logic and functional languages. The decidability result is obtained by generalizing Trifonov and Smith's algorithm over lattices, to the case of quasi-lattices with a complexity in O(mvMvn3), where m (resp. M) stands for the number of minimal (resp. maximal) elements of the quasi-lattice, v is the number of unbounded variables and n is the number of constraints. Similarly, we extend Pottier's algorithm for computing explicit solutions to the case of quasi-lattices. Finally we evoke some applications of these results to type inference in constraint logic programming and functional programming languages.