Treffer: On-demand broadcasting under deadline

Title:
On-demand broadcasting under deadline
Source:
Algorithms - ESA 2003 (Budapest, 16-19 September 2003)Lecture notes in computer science. :313-324
Publisher Information:
Berlin: Springer, 2003.
Publication Year:
2003
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Georgetown University, United States
ISSN:
0302-9743
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.15716042
Database:
PASCAL Archive

Weitere Informationen

In broadcast scheduling multiple users requesting the same information can be satisfied with one single broadcast. In this paper we study preemptive on-demand broadcast scheduling with deadlines on a single broadcast channel. We will show that the upper bound results in traditional real-time scheduling does not hold under broadcast scheduling model. We present two easy to implement online algorithms BCast and its variant BCast2. Under the assumption the requests are approximately of equal length (say k), we show that BCast is O(k) competitive. We establish that this bound is tight by showing that every online algorithm is Ω(k) competitive even if all requests are of same length k. We then consider the case where the laxity of each request is proportional to its length. We show that BCast is constant competitive if all requests are approximately of equal length. We then establish that BCast2 is constant competitive for requests with arbitrary length. We also believe that a combinatorial lemma that we use to derive the bounds can be useful in other scheduling system where the deadlines are often changing (or advanced).