Treffer: Algoritmo de clustering on-line utilizando metaheurísticas y técnicas de muestreo / On-line clustering algorithm using a metaheuristic approach and sampling techniques

Title:
Algoritmo de clustering on-line utilizando metaheurísticas y técnicas de muestreo / On-line clustering algorithm using a metaheuristic approach and sampling techniques
Source:
XIX Congreso de la Sociedad Española para el Procesamiento del Lenguaje Natural, Universidad de Alcalá, 10, 11 y 12 de septiembre de 2003Procesamiento del lenguaje natural. (31):57-63
Publisher Information:
Lleida: Sociedad Espanola para el Procesamiento del Lenguaje Natural, 2003.
Publication Year:
2003
Physical Description:
print, 16 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
Spanish; Castilian
Author Affiliations:
Dpto. Electricidad y Electrónica, Universidad del País Vasco, Apto. 664, Bilbao 48940, Spain
Dpto. Informática, Estadística y Telemática, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, Madrid 28933, Spain
ISSN:
1135-5948
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Sciences of information and communication. Documentation

FRANCIS
Accession Number:
edscal.15792549
Database:
PASCAL Archive

Weitere Informationen

Document clustering involves dividing a set of documents into separate clusters (subsets), so that the document are similar to other documents in the same cluster, and less similars or different from documents in other clusters. In certain conditions the clustering is a computational expensive task, for exemple: working with a huge collection of document without prior knowledge of the appropriate number of clusters. In addition, if it is necessary a solution in few seconds, the conventional methods of calculation of the optimum number of clusters are unacceptable. In this paper we propose an algorithm for clustering a set of documents, without prior knowledge of the appropriate number of clusters. The emphasis has been done in the reduction of the calculation time, reason why we be able to say that our algorithm can achieve a clustering on-line. Our algorithm combines the use of a global stopping rule, genetic algorithms, techniques of statistical sampling and one classic algorithm of clustering.