Treffer: Algoritmo de clustering on-line utilizando metaheurísticas y técnicas de muestreo / On-line clustering algorithm using a metaheuristic approach and sampling techniques
Dpto. Informática, Estadística y Telemática, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, Madrid 28933, Spain
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
FRANCIS
Weitere Informationen
Document clustering involves dividing a set of documents into separate clusters (subsets), so that the document are similar to other documents in the same cluster, and less similars or different from documents in other clusters. In certain conditions the clustering is a computational expensive task, for exemple: working with a huge collection of document without prior knowledge of the appropriate number of clusters. In addition, if it is necessary a solution in few seconds, the conventional methods of calculation of the optimum number of clusters are unacceptable. In this paper we propose an algorithm for clustering a set of documents, without prior knowledge of the appropriate number of clusters. The emphasis has been done in the reduction of the calculation time, reason why we be able to say that our algorithm can achieve a clustering on-line. Our algorithm combines the use of a global stopping rule, genetic algorithms, techniques of statistical sampling and one classic algorithm of clustering.