Treffer: River stage forecasting with particle swarm optimization

Title:
River stage forecasting with particle swarm optimization
Authors:
Source:
Innovations in applied artificial intelligence (Ottawa ON, 17-20 May 2004)Lecture notes in computer science. :1166-1173
Publisher Information:
Berlin: Springer, 2004.
Publication Year:
2004
Physical Description:
print, 17 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hunghom, Kowloon, Hong-Kong
ISSN:
0302-9743
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.15811479
Database:
PASCAL Archive

Weitere Informationen

An accurate water stage prediction allows the pertinent authority to issue a forewarning of the impending flood and to implement early evacuation measures when required. Existing methods including rainfall-runoff modeling or statistical techniques entail exogenous input together with a number of assumptions. The use of artificial neural networks has been shown to be a cost-effective technique. But their training, usually with back-propagation algorithm or other gradient algorithms, is featured with certain drawbacks, such as very slow convergence and easily getting stuck in a local minimum. In this paper, a particle swarm optimization model is adopted to train perceptrons. The approach is demonstrated to be feasible and effective by predicting real-time water levels in Shing Mun River of Hong Kong with different lead times on the basis of the upstream gauging stations or stage/time history at the specific station. It is shown from the verification simulations that faster and more accurate results can be acquired.