Result: A biologically motivated and computationally efficient natural language processor
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
Conventional artificial neural network models lack many physiological properties of the neuron. Current learning algorithms are more concerned to computational performance than to biological credibility. Regarding a natural language processing application, the thematic role assignment - semantic relations between words in a sentence -, the purpose of the proposed system is to compare two different connectionist modules for the same application: (1) the usual simple recurrent network using backpropagation learning algorithm with (2) a biologically inspired module, which employs a bi-directional architecture and learning algorithm more adjusted to physiological attributes of the cerebral cortex. Identical sets of sentences are used to train the modules. After training, the achieved output data show that the physiologically plausible module displays higher accuracy for expectable thematic roles than the traditional one.