Result: The joinability and unification problems for confluent semi-constructor TRSs
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
The unification problem for term rewriting systems (TRSs) is the problem of deciding, for a TRS R and two terms s and t, whether s and t are unifiable modulo R. Mitsuhashi et al. have shown that the problem is decidable for confluent simple TRSs. Here, a TRS is simple if the right-hand side of every rewrite rule is a ground term or a variable. In this paper, we extend this result and show that the unification problem for confluent semi-constructor TRSs is decidable. Here, a semi-constructor TRS is such a TRS that every subterm of the right-hand side of each rewrite rule is ground if its root is a defined symbol. We first show the decidability of joinability for confluent semi-constructor TRSs. Then, using the decision algorithm for joinability, we obtain a unification algorithm for confluent semi-constructor TRSs.