Result: ROC analysis for fetal hypoxia problem by artificial neural networks
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
As fetal hypoxia may damage or kill the fetus, it is very important to monitor the infant so that any signs of fetal distress can be detected as soon as possible. In this paper, the performances of some artificial neural networks are evaluated, which eventually produce the suggested diagnosis of fetal hypoxia. Multilayer perceptron (MLP) structure with standard back propagation, MLP with fast back propagation (adaptive learning and momentum term added), Radial Basis Function (RBF) network structure trained by orthogonal least square algorithm, and Conic Section Function Neural Network (CSFNN) with adaptive learning were used for this purpose. Further more, Receiver Operating Characteristic (ROC) analysis is used to determine the accuracy of diagnostic test.