Treffer: The evolution of substructure - II. Linking dynamics to environment

Title:
The evolution of substructure - II. Linking dynamics to environment
Source:
Monthly Notices of the Royal Astronomical Society. 351(2):410-422
Publisher Information:
Oxford: Blackwell Science, 2004.
Publication Year:
2004
Physical Description:
print, 41 ref
Original Material:
INIST-CNRS
Subject Terms:
Astronomy earth cosmic environment, Astronomie et environnement cosmique terrestre, Sciences exactes et technologie, Exact sciences and technology, Terre, ocean, espace, Earth, ocean, space, Astronomie, Astronomy, Astronomie fondamentale et astrophysique. Instrumentation, techniques, et observations astronomiques, Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations, Techniques d'observation et de réduction des données. Simulation et modélisation par ordinateur, Observation and data reduction techniques. Computer modeling and simulation, Méthodes mathématiques et méthodes de simulation sur ordinateur, Mathematical procedures and computer techniques, Systèmes stellaires. Objets et systèmes galactiques et extragalactiques. L'univers, Stellar systems. Galactic and extragalactic objects and systems. The universe, Caractéristiques et propriétés des galaxies externes et des objets extragalactiques, Characteristics and properties of external galaxies and extragalactic objects, Origine, formation, évolution, âge et formation stellaire, Origin, formation, evolution, age, and star formation, Age, Edad, Anisotropie, Anisotropy, Corrélation, Correlations, Dynamique, Dynamics, Excentricité, Eccentricity, Formation galaxies, Galaxy formation, Galaxies compagnons, Satellite galaxies, Galaxias satélite, Matière sombre, Dark matter, Méthode numérique, Numerical method, Método numérico, Orbite, Orbits, Propriété physique, Physical properties, Simulation numérique, Digital simulation, Sous structure, Substructure, Subestructura, Système n corps, N body system, Sistema n cuerpos, Halo galaxies, Galaxy halo, Halo galaxia, galaxies: formation, galaxies: haloes, methods: N-body simulations, methods: numerical
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Centre for Astrophysics & Supercomputing, Swinburne University, Mail #31, PO Box 218, Hawthorn, Victoria 3122, Australia
Research School of Astronomy and Astrophysics, Australian National University, Weston Creek Post Office, ACT 2611, Australia
ISSN:
0035-8711
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy
Accession Number:
edscal.15864931
Database:
PASCAL Archive

Weitere Informationen

We present results from a series of high-resolution N-body simulations that focus on the formation and evolution of eight dark matter haloes, each of the order of a million particles within the virial radius. We follow the time evolution of hundreds of satellite galaxies with unprecedented time resolution, relating their physical properties to the differing halo environmental conditions. The self-consistent cosmological framework in which our analysis was undertaken allows us to explore satellite disruption within live host potentials, a natural complement to earlier work conducted within static potentials. Our host haloes were chosen to sample a variety of formation histories, ages and triaxialities; despite their obvious differences, we find striking similarities within the associated substructure populations. Namely, all satellite orbits follow nearly the same eccentricity distribution with a correlation between eccentricity and pericentre. We also find that the destruction rate of the substructure population is nearly independent of the mass, age and triaxiality of the host halo. There are, however, subtle differences in the velocity anisotropy of the satellite distribution. We find that the local velocity bias at all radii is greater than unity for all haloes and this increases as we move closer to the halo centre, where it varies from 1.1 to 1.4. For the global velocity bias, we find a small but slightly positive bias, although when we restrict the global velocity bias calculation to satellites that have had at least one orbit, the bias is essentially removed.