Treffer: Light-curve classification in massive variability surveys. II. Transients towards the Large Magellanic Cloud
Institute of Astronomy, Madingley Rd, Cambridge CB3 0HA, United Kingdom
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Automatic classification of variability is now possible with tools such as neural networks. Here, we present two neural networks for the identification of microlensing events: the first discriminates against variable stars and the second against supernovae. The inputs to the networks include parameters describing the shape and the size of the light curve, together with the colour of the event. The network computes the posterior probability of microlensing, together with an estimate of the likely error. An algorithm is devised for direct calculation of the microlensing rate from the output of the neural networks. We present a new analysis of the microlensing candidates towards the Large Magellanic Cloud (LMC). The neural networks confirm the microlensing nature of only seven of the possible 17 events identified by the MACHO experiment. This suggests that earlier estimates of the microlensing optical depth towards the LMC may have been overestimated. A smaller number of events is consistent with the assumption that all the microlensing events are caused by the known stellar populations in the outer Galaxy/LMC.