Service restrictions from February 12-22, 2026—more information on the University Library website

Result: A nonparametric classifier for unsegmented text

Title:
A nonparametric classifier for unsegmented text
Source:
Document recognition and retrieval XI (San Jose CA, 21-22 January 2004)SPIE proceedings series. 5296:102-108
Publisher Information:
Bellingham WA: SPIE, 2004.
Publication Year:
2004
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Rensselaer Polytechnic Institute, Troy, NY 12180-3590, United States
University of Nebraska, Lincoln, NE, 68588-0115, United States
Lehigh University, Bethlehem, PA, 18015-3084, United States
Indian Institute of Technology, Kanpur, 208 016, India
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Sciences of information and communication. Documentation

FRANCIS
Accession Number:
edscal.16075819
Database:
PASCAL Archive

Further Information

Symbolic Indirect Correlation (SIC) is a new classification method for unsegmented patterns. SIC requires two levels of comparisons. First, the feature sequences from an unknown query signal and a known multi-pattern reference signal are matched. Then, the order of the matched features is compared with the order of matches between every lexicon symbol-string and the reference string in the lexical domain. The query is classified according to the best matching lexicon string in the second comparison. Accuracy increases as classified feature-and-symbol strings are added to the reference string.