Treffer: A framework for energy efficient design of multi-rate applications using hybrid reconfigurable systems

Title:
A framework for energy efficient design of multi-rate applications using hybrid reconfigurable systems
Source:
FPL 2004 : field-programmable logic and applications (Antwerp, 30 August - 1 September 2004)Lecture notes in computer science. :658-668
Publisher Information:
Berlin: Springer, 2004.
Publication Year:
2004
Physical Description:
print, 15 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
University of Southern California, CA, United States
ISSN:
0302-9743
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Electronics
Accession Number:
edscal.16107622
Database:
PASCAL Archive

Weitere Informationen

Hybrid reconfigurable systems integrate DSPs and general purpose processors with an FPGA fabric. These systems may support features such as efficient start-up and shut-down, dynamic voltage scaling, and reconfiguration, that are exploited for energy-efficient application design. Duty cycle is the proportion of time during which a system is operated. Multi-rate applications consist of tasks that execute at different rates. Designing an energy-efficient hybrid reconfigurable system with duty cycle specification that implements a multi-rate application using devices with multiple operating states presents several challenges such as modeling, rapid performance estimation, and efficient design space exploration. We present a design framework that addresses these challenges. Using our framework, we illustrate the design of two energy efficient systems: automated target detection and adaptive beamforming.