Treffer: On acyclic and head-cycle free nested logic programs

Title:
On acyclic and head-cycle free nested logic programs
Source:
Logic programming (Saint Malo, 6-10 September 2004)Lecture notes in computer science. :225-239
Publisher Information:
Berlin: Springer, 2004.
Publication Year:
2004
Physical Description:
print, 29 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institut für Informatik, Universität Potsdam, Postfach 90 03 27, 14439 Potsdam, Germany
Institut fur Informationssysteme 184/3, Technische Universität Wien, FavoritenstraBe 9-11, 1040 Vienna, Austria
ISSN:
0302-9743
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.16126389
Database:
PASCAL Archive

Weitere Informationen

We define the class of head-cycle free nested logic programs, and its proper subclass of acyclic nested programs, generalising similar classes originally defined for disjunctive logic programs. We then extend several results known for acyclic and head-cycle free disjunctive programs under the stable-model semantics to the nested case. Most notably, we provide a propositional semantics for the program classes under consideration. This generalises different extensions of Fages' theorem, including a recent result by Erdem and Lifschitz for tight logic programs. We further show that, based on a shifting method, head-cycle free nested programs can be rewritten into normal programs in polynomial time and space, extending a similar technique for head-cycle free disjunctive programs. All this shows that head-cycle free nested programs constitute a subclass of nested programs possessing a lower computational complexity than arbitrary nested programs, providing the polynomial hierarchy does not collapse.