Result: On test functions for evolutionary multi-objective optimization

Title:
On test functions for evolutionary multi-objective optimization
Source:
PPSN VIII : parallel problem solving from nature (Birmingham, 18-22 September 2004)Lecture notes in computer science. :792-802
Publisher Information:
Berlin: Springer, 2004.
Publication Year:
2004
Physical Description:
print, 9 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Honda Research Institute Europe GmbH, Carl-Legien-Strasse 30, 63073 Offenbach/Main, Germany
ISSN:
0302-9743
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.16176916
Database:
PASCAL Archive

Further Information

In order to evaluate the relative performance of optimization algorithms benchmark problems are frequently used. In the case of multi-objective optimization (MOO), we will show in this paper that most known benchmark problems belong to a constrained class of functions with piecewise linear Pareto fronts in the parameter space. We present a straightforward way to define benchmark problems with an arbitrary Pareto front both in the fitness and parameter spaces. Furthermore, we introduce a difficulty measure based on the mapping of probability density functions from parameter to fitness space. Finally, we evaluate two MOO algorithms for new benchmark problems.