Treffer: Multi-objective optimization of a composite material spring design using an evolutionary algorithm
Département de Mathématiques et de Génie Industriel, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Québec, H3C 3A7, Canada
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
A multi-objective evolutionary algorithm is applied to optimize the design of a helical spring made out of a composite material. The criteria considered are the minimization of the mass along with the maximization of the stiffness of the spring. Considering the computation time required for finite element analyses, the optimization is performed using approximate relations between design parameters. Dual kriging interpolation allows improving the accuracy of the classical model of spring stiffness by estimating the error between the model and the results of finite element analyses. This error is taken into account by adding a correction function to the stiffness function. The NSGA-II algorithm is applied and shows satisfactory results, while using the correction function induces a displacement of the Pareto front.