Result: Dynamic allocation of data-objects in the web, using self-tuning Genetic Algorithms
Instituto Tecnológico de Ciudad Madero, Mexico
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
In this paper, a new mechanism for automatically obtaining some control parameter values for Genetic Algorithms is presented, which is independent of problem domain and size. This approach differs from the traditional methods which require knowing the problem domain first, and then knowing how to select the parameter values for solving specific problem instances. The proposed method uses a sample of problem instances, whose solution allows to characterize the problem and to obtain the parameter values. To test the method, a combinatorial optimization model for data-object allocation in the Web (known as DFAR) was solved using Genetic Algorithms. We show how the proposed mechanism allows to develop a set of mathematical expressions that relates the problem instance size to the control parameters of the algorithm. The expressions are then used, in on-line process, to control the parameter values. We show the last experimental results with the self-tuning mechanism applied to solve a sample of random instances that simulates a typical Web workload. We consider that the proposed method principles must be extended to the self-tuning of control parameters for other heuristic algorithms.