Treffer: Interferometric data modelling: issues in realistic data generation

Title:
Interferometric data modelling: issues in realistic data generation
Authors:
Source:
Proceedings of the 8th gravitational wave data analysis workshop, Milwaukee, WI, USA, 17-20 December 2003Classical and quantum gravity (Print). 21(20):S1783-S1792
Publisher Information:
Bristol: Institute of Physics, 2004.
Publication Year:
2004
Physical Description:
print, 30 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520, United States
ISSN:
0264-9381
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy
Accession Number:
edscal.16210586
Database:
PASCAL Archive

Weitere Informationen

This study describes algorithms developed for modelling interferometric noise in a realistic manner, i.e. incorporating non-stationarity that can be seen in the data from the present generation of interferometers. The noise model is based on individual component models (ICM) with the application of auto regressive moving average (ARMA) models. The data obtained from the model are vindicated by standard statistical tests, e.g. the KS test and Akaike minimum criterion. The results indicate a very good fit. The advantage of using ARMA for ICMs is that the model parameters can be controlled and hence injection and efficiency studies can be conducted in a more controlled environment. This realistic non-stationary noise generator is intended to be integrated within the data monitoring tool framework.