Treffer: An interior affine scaling projective algorithm for nonlinear equality and linear inequality constrained optimization

Title:
An interior affine scaling projective algorithm for nonlinear equality and linear inequality constrained optimization
Authors:
Source:
Journal of computational and applied mathematics. 173(1):115-148
Publisher Information:
Amsterdam: Elsevier, 2005.
Publication Year:
2005
Physical Description:
print, 21 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Programmation mathématique, Mathematical programming, Algorithme rapide, Fast algorithm, Algoritmo rápido, Analyse numérique, Numerical analysis, Análisis numérico, Backtracking, Contrainte inégalité, Inequality constraint, Constreñimiento desigualdad, Contrainte égalité, Equality constraint, Constreñimiento igualdad, Fonction pénalité, Penalty function, Función penalidad, Fonction quadratique, Quadratic function, Función cuadrática, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode moindre carré, Least squares method, Método cuadrado menor, Optimisation sous contrainte, Constrained optimization, Optimización con restricción, Taux convergence, Convergence rate, Relación convergencia, 49XX, 65B99, Algorithme linéaire, Contrainte linéaire, Ecaillage affine, Affine scaling, Méthode région trust, Trust region method, Projection réduite, Reduced projection, Technique non monotone, Nonmonotonic technique
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
ISSN:
0377-0427
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Operational research. Management
Accession Number:
edscal.16214930
Database:
PASCAL Archive

Weitere Informationen

In this paper, we propose a new nonmonotonic interior point backtracking strategy to modify the reduced projective affine scaling trust region algorithm for solving optimization subject to nonlinear equality and linear inequality constraints. The general full trust region subproblem for solving the nonlinear equality and linear inequality constrained optimization is decomposed to a pair of trust region subproblems in horizontal and vertical subspaces of linearize equality constraints and extended affine scaling equality constraints. The horizontal subproblem in the proposed algorithm is defined by minimizing a quadratic projective reduced Hessian function subject only to an ellipsoidal trust region constraint in a null subspace of the tangential space, while the vertical subproblem is also defined by the least squares subproblem subject only to an ellipsoidal trust region constraint. By introducing the Fletcher's penalty function as the merit function, trust region strategy with interior point backtracking technique will switch to strictly feasible interior point step generated by a component direction of the two trust region subproblems. The global convergence of the proposed algorithm while maintaining fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some high nonlinear function conditioned cases.