Result: Statistical origin of pseudo-Hermitian supersymmetry and pseudo-Hermitian fermions

Title:
Statistical origin of pseudo-Hermitian supersymmetry and pseudo-Hermitian fermions
Source:
International Conference on Progress in Supersymmetric Quantum Mechanics (PSQM'03) (Valladolid, Spain, 15-19 July 2003)Journal of physics. A, mathematical and general. 37(43):10193-10207
Publisher Information:
Bristol: Institute of Physics, 2004.
Publication Year:
2004
Physical Description:
print, 49 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, Koç University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
ISSN:
0305-4470
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics of elementary particles and fields

Theoretical physics
Accession Number:
edscal.16222660
Database:
PASCAL Archive

Further Information

We show that the metric operator for a pseudo-supersymmetric Hamiltonian that has at least one negative real eigenvalue is necessarily indefinite. We introduce pseudo-Hermitian fermion (phermion) and abnormal phermion algebras and provide a pair of basic realizations of the algebra of N = 2 pseudo-supersymmetric quantum mechanics in which pseudo-supersymmetry is identified with either a boson-phermion or a boson-abnormal-phermion exchange symmetry. We further establish the physical equivalence (non-equivalence) of phermions (abnormal phermions) with ordinary fermions, describe the underlying Lie algebras and study multi-particle systems of abnormal phermions. The latter provides a certain bosonization of multifermion systems.