Result: Stochastic formulation of the renormalization group: supersymmetric structure and topology of the space of couplings

Title:
Stochastic formulation of the renormalization group: supersymmetric structure and topology of the space of couplings
Authors:
Source:
International Conference on Progress in Supersymmetric Quantum Mechanics (PSQM'03) (Valladolid, Spain, 15-19 July 2003)Journal of physics. A, mathematical and general. 37(43):10409-10419
Publisher Information:
Bristol: Institute of Physics, 2004.
Publication Year:
2004
Physical Description:
print, 21 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Instituto de Matemáticas y Física Fondamental, CSIC, Serrano 123, 28006 Madrid, Spain
ISSN:
0305-4470
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Physics of elementary particles and fields

Theoretical physics
Accession Number:
edscal.16222675
Database:
PASCAL Archive

Further Information

The exact or Wilson renormalization group equations can be formulated as a functional Fokker-Planck equation in the infinite-dimensional configuration space of a field theory, suggesting a stochastic process in the space of couplings. Indeed, the ordinary renormalization group differential equations can be supplemented with noise, making them stochastic Langevin equations. Furthermore, if the renormalization group is a gradient flow, the space of couplings can be endowed with a supersymmetric structure a la Parisi-Sourlas. The formulation of the renormalization group as supersymmetric quantum mechanics is useful for analysing the topology of the space of couplings by means of Morse theory. We present simple examples with one or two couplings.