Result: A bijection for the total area of parallelogram polyominoes

Title:
A bijection for the total area of parallelogram polyominoes
Source:
Fun with algorithms 2 (FUN 2001)Discrete applied mathematics. 144(3):291-302
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2004.
Publication Year:
2004
Physical Description:
print, 13 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Dipartimento di Matematica, Università di Siena, Pian dei Mantellini 44, 53100, Siena, Italy
LIAFA, Uniuersité Denis Diderot 2, place Jussieu, 75251 Paris, France
Dipartimento di Sistemi e Informatica, Via Lombroso 6/17, 50134 Firenze, Italy
Dipartimento di Matematica, Universita di Siena, Pian dei Mantellini 44, 53100, Siena, Italy
ISSN:
0166-218X
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.16264248
Database:
PASCAL Archive

Further Information

The sum of the areas of the parallelogram polyominoes having semi-perimeter n+2 is equal to 4n. In this paper we give a simple proof of this property by means of a mapping from the cells of parallelogram polyominoes having semi-perimeter n + 2 to the 4n words of length n of the free monoid {a,b,c,d}*. This mapping works in linear time. Then, we introduce a tiling game arising from this enumerative property.