Result: Weak minimization of DFA: an algorithm and applications
Department of Computer Science, San Francisco State University, San Francisco, CA 94132, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Further Information
DFA minimization is an important problem in algorithm design and is based on the notion of DFA equivalence: Two DFA's are equivalent if and only if they accept the same set of strings. In this paper, we propose a new notion of DFA equivalence (that we call weak-equivalence): We say that two DFA's are weawy equivalent if they both accept the same number of strings of length k for every k. The motivation for this problem is as follows. A large number of counting problems can be solved by encoding the combinatorial objects we want to count as strings over a finite alphabet. If the collection of encoded strings is accepted by a DFA, then standard algorithms from computational linear algebra can be used to solve the counting problem efficiently. When applying this approach to large-scale applications, the bottleneck is the space complexity since the computation involves a matrix of order k x k if k is the size of the underlying DFA M. This leads to the natural question: Is there a smaller DFA that is weakly equivalent to M? We present an algorithm of time complexity O(k3) to find a compact DFA weakly equivalent to a given DFA. We illustrate, in the case of a tiling problem, that our algorithm reduces a (strongly minimal) DFA by a factor close to 1/2.