Result: Fastest mixing Markov chain on a graph

Title:
Fastest mixing Markov chain on a graph
Source:
SIAM review (Print). 46(4):667-689
Publisher Information:
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2004.
Publication Year:
2004
Physical Description:
print, 57 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Probabilités et statistiques, Probability and statistics, Théorie des probabilités et processus stochastiques, Probability theory and stochastic processes, Processus de markov, Markov processes, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Algèbre linéaire numérique, Numerical linear algebra, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Programmation mathématique, Mathematical programming, Calcul scientifique, Scientific computation, Computación científica, Chaîne Markov, Markov chain, Cadena Markov, Condition optimalité, Optimality condition, Condición optimalidad, Graphe connexe, Connected graph, Grafo conexo, Loi uniforme, Uniform distribution, Ley uniforme, Marche aléatoire, Random walk, Marcha aleatoria, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Matrice transition, Transition matrix, Matriz transición, Méthode heuristique, Heuristic method, Método heurístico, Méthode optimisation, Optimization method, Método optimización, Optimisation sousgradient, Subgradient optimization, Optimizacíon subgradiente, Probabilité transition, Transition probability, Probabilidad transición, Programmation semi définie, Semi definite programming, Programacíon semi definida, Taux convergence, Convergence rate, Relación convergencia, Valeur propre, Eigenvalue, Valor propio, 37A25, 49XX, 65B99, 65C40, 68R10, Mélangeage rapid, Fast mixing
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Information Systems Laboratory, Department of Electrical Engineering, Stanford University, Stanford, CA 94305-4065, United States
Department of Statistics and Department of Mathematics, Stanford University, Stanford, CA 94305-4065, United States
Information Systems Laboratory, Department of Electrical Engineering, Stanford University, Stanford, CA 94305-9510, United States
ISSN:
0036-1445
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Operational research. Management
Accession Number:
edscal.16287190
Database:
PASCAL Archive

Further Information

We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e., the mixing rate of the Markov chain, is determined by the second largest eigenvalue modulus (SLEM) of the transition probability matrix. In this paper we address the problem of assigning probabilities to the edges of the graph in such a way as to minimize the SLEM, i.e., the problem of finding the fastest mixing Markov chain on the graph. We show that this problem can be formulated as a convex optimization problem, which can in turn be expressed as a semidefinite program (SDP). This allows us to easily compute the (globally) fastest mixing Markov chain for any graph with a modest number of edges (say, 1000) using standard numerical methods for SDPs. Larger problems can be solved by exploiting various types of symmetry and structure in the problem, and far larger problems (say, 100,000 edges) can be solved using a subgradient method we describe. We compare the fastest mixing Markov chain to those obtained using two commonly used heuristics: the maximum-degree method, and the Metropolis-Hastings algorithm. For many of the examples considered, the fastest mixing Markov chain is substantially faster than those obtained using these heuristic methods. We derive the Lagrange dual of the fastest mixing Markov chain problem, which gives a sophisticated method for obtaining (arbitrarily good) bounds on the optimal mixing rate, as well as the optimality conditions. Finally, we describe various extensions of the method, including a solution of the problem of finding the fastest mixing reversible Markov chain, on a fixed graph, with a given equilibrium distribution.