Result: Techniques from combinatorial approximation algorithms yield efficient algorithms for random 2k-SAT

Title:
Techniques from combinatorial approximation algorithms yield efficient algorithms for random 2k-SAT
Source:
Theoretical computer science. 329(1-3):1-45
Publisher Information:
Amsterdam: Elsevier, 2004.
Publication Year:
2004
Physical Description:
print, 40 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6, 10099 Berlin, Germany
Technische Universität Chemnitz, Fakultät für Informatik, Strasse der Nationen 62, 09107 Chemnitz, Germany
ISSN:
0304-3975
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.16327843
Database:
PASCAL Archive

Further Information

We apply techniques from the theory of approximation algorithms to the problem of deciding whether a random k-SAT formula is satisfiable. Let Formn,k,m denote a random k-SAT instance with n variables and m clauses. Using known approximation algorithms for MAX CUT or MIN BISECTION, we show how to certify that Formn,4,m is unsatisfiable efficiently, provided that m ≥ Cn2 for a sufficiently large constant C > 0. In addition, we present an algorithm based on the Lovász v function that decides within polynomial expected time whether Formn,k,m is satisfiable, provided that k is even and m ≥ C . 4knk/2. Finally, we present an algorithm that approximates random MAX 2-SAT on input Formn,2,m within a factor of 1 - O(n/m)1/2 in expected polynomial time, for m ≥ Cn.