Result: Spherically symmetric solutions of a (4 + n)-dimensional Einstein-Yang-Mills model with cosmological constant
School of Engineering and Sciences, International University Bremen (IUB), 28725 Bremen, Germany
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Theoretical physics
Further Information
We construct solutions of an Einstein-Yang-Mills system including a cosmological constant in 4 + n spacetime dimensions, where the n-dimensional manifold associated with the extra dimensions is taken to be Ricci flat. Assuming the matter and metric fields to be independent of the n extra coordinates, a spherical symmetric ansatz for the fields leads to a set of coupled ordinary differential equations. We find that for n > 1 only solutions with either one non-zero Higgs field or with all Higgs fields constant and zero gauge field function (corresponding to a Wu-Yang-type ansatz) exist. We give the analytic solutions available in this model. These are 'embedded' Abelian solutions with a diverging size of the manifold associated with the extra n dimensions. Depending on the choice of parameters, these latter solutions either represent naked singularities or they possess a single horizon. We also present solutions of the effective four-dimensional Einstein-Yang-Mills-Higgs-dilaton model, where the higher-dimensional cosmological constant induces a Liouville-type potential. The solutions are non-Abelian solutions with diverging Higgs fields, which exist only up to a maximal value of the cosmological constant.