Result: Notes on prequantization of moduli of G-bundles with connection on Riemann surfaces

Title:
Notes on prequantization of moduli of G-bundles with connection on Riemann surfaces
Source:
[Geometric and Topological Methods for Quantum Field Theory]Annales mathématiques Blaise Pascal. 11(2):181-186
Publisher Information:
Aubière: Université Blaise Pascal, Département de mathématiques, 2004.
Publication Year:
2004
Physical Description:
print, 1 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
University of Chicago, Department of Mathematics, 5734 S. University Avenue, Chicago, Illinois 60637, United States
ISSN:
1259-1734
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.16408196
Database:
PASCAL Archive

Further Information

Let X → S be a smooth proper family of complex curves (i.e. family of Riemann surfaces), and F a G-bundle over X with connection along the fibres X → S. We construct a line bundle with connection (LF, ⊇F) on S (also in cases when the connection on F has regular singularities). We discuss the resulting (£F, ⊇F) mainly in the case G = C*. For instance when S is the moduli space of line bundles with connection over a Riemann surface X, X = X x S, and F is the Poincaré bundle over X, we show that (£F, ⊇F) provides a prequantization of S.