Treffer: Spherical sequences with low aperiodic crosscorrelation

Title:
Spherical sequences with low aperiodic crosscorrelation
Source:
IEE proceedings. Communications. 151(6):601-604
Publisher Information:
Stevenage, Herts: Institution of Electrical Engineers, 2004.
Publication Year:
2004
Physical Description:
print, 14 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Departmento Teoria de la Serial y Comunicaciones, Universiad de Alcalá, Escuela Politécnica, Ctra Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
Departmento Teoria de la Serial y Comunicaciones, Universidad de Alcalá, Mayor 48, 19140 Horche, Guadalajara, Spain
Department of Electrical and Computer Engineering, University of British Columbia, 2356 Main Mall, Vancouver BC, V6T 1Z4, Canada
ISSN:
1350-2425
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Telecommunications and information theory
Accession Number:
edscal.16416824
Database:
PASCAL Archive

Weitere Informationen

The authors present a new procedure for the generation of non-binary sequences having superior aperiodic crosscorrelation properties to Gold sequences. The proposed procedure randomly extracts points from the surface of a multidimensional sphere, with a posterior selection technique similar to those used in genetic algorithms. A theoretical model is provided, describing the behaviour of these sequences, and several numerical experiments are performed comparing these sequences with those from the literature. It is demonstrated that these sequences outperform both Gold and chaotic generated sequences and approximate the performance of 4-phase sequences in aperiodic crosscorrelation. The sequences have the additional advantages of inherent privacy, due to their random nature and the unlimited number of sequences per set.