Treffer: Direct numerical simulation of the interaction of isotropic turbulence with a shock wave using shock-fitting

Title:
Direct numerical simulation of the interaction of isotropic turbulence with a shock wave using shock-fitting
Source:
High-Order Methods for the Numerical Simulation of Vortical and Turbulent Flows, EUROMECH Colloquium, Darmstadt, Germany, March 2003Comptes rendus. Mécanique. 333(1):87-94
Publisher Information:
Paris: Elsevier, 2005.
Publication Year:
2005
Physical Description:
print, 15 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Fachgebiet Strömungsmechanik, Technische Universität München, Boltzmannstrasse 15, 85748 Garching, Germany
ISSN:
1631-0721
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: fluid mechanics
Accession Number:
edscal.16429589
Database:
PASCAL Archive

Weitere Informationen

The interaction of three-dimensional isotropic turbulence with a plane shock at Mach numbers of M = 2.0 and M = 3.0 is investigated via direct numerical simulation. The numerical scheme is based on a characteristic-type formulation of the Navier-Stokes equations and uses fifth-order upwind schemes in space, a fourth order Runge Kutta scheme in time and a shock-fitting as inlet condition. The isotropic turbulence was generated in a separate computation based on a prescribed energy spectrum. This turbulent flow is considered as frozen, and is convected through the shock with a prescribed average shock speed. An FFT interpolation is used to obtain the upstream values at the instantaneous shock location.