Treffer: Phase space parameters for neural network based vowel recognition
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
This paper presents the implementation of a neural network with error back propagation algorithm for the speech recognition application with Phase Space Point Distribution as the input parameter. By utilizing nonlinear or chaotic signal processing techniques to extract time domain based phase space features, a method is suggested for speech recognition. Two sets of experiments are presented in this paper. In the first, exploiting the theoretical results derived in nonlinear dynamics, a processing space called phase space is generated and a recognition parameter called Phase Space Point Distribution (PSPD) is extracted. In the second experiment Phase Space Map at a phase angle π/2 is reconstructed and PSPD is calculated. The output of a neural network with error back propagation algorithm demonstrate that phase space features contain substantial discriminatory power.