Treffer: Multiobjective genetic search for spanning tree problem

Title:
Multiobjective genetic search for spanning tree problem
Source:
Neural information processing (Calcutta, 22-25 November 2004)Lecture notes in computer science. :218-223
Publisher Information:
Berlin: Springer, 2004.
Publication Year:
2004
Physical Description:
print, 13 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, WB 721 302, India
ISSN:
0302-9743
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Operational research. Management
Accession Number:
edscal.16442641
Database:
PASCAL Archive

Weitere Informationen

A major challenge to solving multiobjective optimization problems is to capture possibly all the (representative) equivalent and diverse solutions at convergence. In this paper, we attempt to solve the generic multi-objective spanning tree (MOST) problem using an evolutionary algorithm (EA). We consider, without loss of generality, edge-cost and tree-diameter as the two objectives, and use a multiobjective evolutionary algorithm (MOEA) that produces diverse solutions without needing a priori knowledge of the solution space. We test this approach for generating (near-) optimal spanning trees, and compare the solutions obtained from other conventional approaches.