Treffer: Euler solution using Cartesian grid with a gridless least-squares boundary treatment
University of California, Irvine, Irvine, California 92697-3975, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
An approach that uses gridless or meshless methods to address the problem of boundary implementation associated with the use of Cartesian grid is discussed. This method applies the gridless concept only at the interface, whereas a standard structured grid method is used everywhere else. The Cartesian grid is used to specify and distribute the computational points on the boundary surface but not to define the geometrical properties. Euler fluxes for the neighbors of cut cells are computed using the gridless method involving a local least-squares curve fit of a cloud of grid points. The boundary conditions implemented on the surface points are automatically satisfied in the process of evaluating the surface values in a similar least-squares fashion. The present method does not require the use of halo points. Subsonic, transonic, and supersonic flows are computed for the NACA 0012 and RAE 2822 airfoils, and the results compare well with solutions obtained by a standard Euler solver on body-fitted grids. The method is also used to calculate the flow over a three-element airfoil configuration, and the result is compared with the exact solution for this configuration obtained by conformal mapping.