Treffer: DPLS and PPLS: two PLS algorithms for large data sets

Title:
DPLS and PPLS: two PLS algorithms for large data sets
Source:
Partial least squaresComputational statistics & data analysis. 48(1):125-138
Publisher Information:
Amsterdam: Elsevier Science, 2005.
Publication Year:
2005
Physical Description:
print, 27 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Departamento de Informática, Pontificia Universidade Católica do Rio de Janeiro, Rua Marqués de São Vicente 225, Gávea, Rio de Janeiro, Brazil
ISSN:
0167-9473
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.16461610
Database:
PASCAL Archive

Weitere Informationen

Two enhancements to the PLS regression algorithm are presented. The first, direct PLS (DPLS), offers a direct approximate formulation for the calculation of the required eigenvectors when dealing with more than one dependent variable. The second enhancement is parallel PLS (PPLS), a parallel version of the PLS algorithm restricted to the case of only one dependent variable for the regression model. In the experiments, DPLS shows a 40% faster running time, while the PPLS produces a speedup of 3 for the first four machines in a computer cluster architecture.