Treffer: Snopt: An SQP algorithm for large-scale constrained optimization

Title:
Snopt: An SQP algorithm for large-scale constrained optimization
Source:
SIAM review (Print). 47(1):99-131
Publisher Information:
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2005.
Publication Year:
2005
Physical Description:
print, 103 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Algèbre linéaire numérique, Numerical linear algebra, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Automates. Machines abstraites. Machines de turing, Automata. Abstract machines. Turing machines, Calcul scientifique, Scientific computation, Computación científica, Contrainte inégalité, Inequality constraint, Constreñimiento desigualdad, Degré liberté, Freedom degree, Grado libertad, Echelle grande, Large scale, Escala grande, Fonction objectif, Objective function, Función objetivo, Lagrangien, Lagrangian, Lagrangiano, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode quasi Newton, Quasi Newton method, Método cuasi Newton, Méthode séquentielle, Sequential method, Método secuencial, Optimisation sous contrainte, Constrained optimization, Optimización con restricción, Programmation non linéaire, Non linear programming, Programación no lineal, Programmation quadratique, Quadratic programming, Programación cuadrática, 05Bxx, 49XX, 58C15, 65Kxx, 68N19, 68T20, 68Wxx, Contrainte linéaire, Méthode mémoire limitée, Limited memory method, 49D37, 49J15, 49M37, 65F05, 65K05, 90C30, large-scale optimization, limited-memory methods 49J20, nonlinear inequality constraints, nonlinear programming, quasi-Newton methods, sequential quadratic programming
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, United States
Department of Management Science and Engineering, Stanford University, Stanford, CA 94305-4026, United States
ISSN:
0036-1445
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.16554960
Database:
PASCAL Archive

Weitere Informationen

Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available and that the constraint gradients are sparse. Second derivatives are assumed to be unavailable or too expensive to calculate. We discuss an SQP algorithm that uses a smooth augmented Lagrangian merit function and makes explicit provision for infeasibility in the original problem and the QP subproblems. The Hessian of the Lagrangian is approximated using a limited-memory quasi-Newton method. SNOPT is a particular implementation that uses a reduced-Hessian semidefinite QP solver (SQOPT) for the QP subproblems. It is designed for problems with many thousands of constraints and variables but is best suited for problems with a moderate number of degrees of freedom (say, up to 2000). Numerical results are given for most of the CUTEr and COPS test collections (about 1020 examples of all sizes up to 40000 constraints and variables, and up to 20000 degrees of freedom).