Result: Laboratory plasma astrophysics simulation experiments using lasers

Title:
Laboratory plasma astrophysics simulation experiments using lasers
Source:
Invited papers from the 31st European Physical Society Conference on Plasma Physics (London, UK, 28 June-2 July 2004)Plasma physics and controlled fusion. 46(12B):B397-B405
Publisher Information:
Bristol: Institute of Physics, 2004.
Publication Year:
2004
Physical Description:
print, 31 ref
Original Material:
INIST-CNRS
Subject Terms:
Nuclear physics, Physique nucléaire, Plasma physics, Physique des plasmas, Sciences exactes et technologie, Exact sciences and technology, Terre, ocean, espace, Earth, ocean, space, Astronomie, Astronomy, Astronomie fondamentale et astrophysique. Instrumentation, techniques, et observations astronomiques, Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations, Problèmes fondamentaux d'astrophysique, Fundamental aspects of astrophysics, Magnétohydrodynamique et plasma, Magnetohydrodynamics and plasmas, Etoiles, Stars, Phases avancées de l'évolution stellaire (incluant les trous noirs), Late stages of stellar evolution (including black holes), Supernovae, Systèmes stellaires. Objets et systèmes galactiques et extragalactiques. L'univers, Stellar systems. Galactic and extragalactic objects and systems. The universe, Milieu interstellaire et nébuleuses dans la galaxie, Interstellar medium (ism) and nebulae in milky way, Restes de supernovae, Supernova remnants, Milieu interstellaire et nébuleuses dans les galaxies externes, Interstellar medium (ism) and nebulae in external galaxies, Astrophysique, Astrophysics, Densité électron, Electron density, Effet champ magnétique, Magnetic field effects, Etude expérimentale, Experimental study, Interaction plasma, Plasma interactions, Laser puissance, High-power lasers, Matière plastique, Plastics, Physique plasma, Plasma physics, Plasma astrophysique, Astrophysical plasma, Plasma produit par laser, Laser-produced plasma, Plasma sans collision, Collisionless plasma, Pression plasma, Plasma pressure, Reste supernova, Supernova remnants, Supernova, Supernovae, Température plasma, Plasma temperature
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Physics, University of York, York, YO10 SDD, United Kingdom
UKAEA Culham Division, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, United Kingdom
ISSN:
0741-3335
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy
Accession Number:
edscal.16555901
Database:
PASCAL Archive

Further Information

Laboratory astroplasma physics experiments advance both our astrophysics and plasma physics knowledge. Contemporary high-energy, high-power laser technology enables us to reproduce in the laboratory the conditions of temperature and pressure that are met in extreme stellar environments. The focus is on experiments designed to address key aspects of the plasma physics occurring in supernova remnants. In this approach, a plasma physics model of the astrophysical object is identified and then scaled, and applied to a laboratory experiment. This offers the possibility of detailed measurements, which can be repeated as the input conditions are altered. Results from a scaled experiment designed to address aspects of collisionless plasma interaction in a young supernova remnant are presented. This experimental study is based on the interaction of two millimetre-scale counter-streaming laser-produced plasmas, created from exploded thin plastic foils in an intense transverse magnetic field. The dynamics of the two plasmas and their interaction are studied with, and without, magnetic fields, through spatially and temporally resolved measurements of the electron density.