Result: Lagrangian decomposition of block-separable mixed-integer all-quadratic programs

Title:
Lagrangian decomposition of block-separable mixed-integer all-quadratic programs
Authors:
Source:
Mathematical programming. 102(2):295-312
Publisher Information:
Heidelberg: Springer, 2005.
Publication Year:
2005
Physical Description:
print, 45 ref
Original Material:
INIST-CNRS
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, 12489 Berlin, Germany
ISSN:
0025-5610
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Operational research. Management
Accession Number:
edscal.16576103
Database:
PASCAL Archive

Further Information

The purpose of this paper is threefold. First we propose splitting schemes for reformulating non-separable problems as block-separable problems. Second we show that the Lagrangian dual of a block-separable mixed-integer all-quadratic program (MIQQP) can be formulated as an eigenvalue optimization problem keeping the block-separable structure. Finally we report numerical results on solving the eigenvalue optimization problem by a proximal bundle algorithm applying Lagrangian decomposition. The results indicate that appropriate block-separable reformulations of MIQQPs could accelerate the running time of dual solution algorithms considerably.