Treffer: Counting strings with given elementary symmetric function evaluations. II: Circular strings

Title:
Counting strings with given elementary symmetric function evaluations. II: Circular strings
Source:
SIAM journal on discrete mathematics (Print). 18(1):71-82
Publisher Information:
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2005.
Publication Year:
2005
Physical Description:
print, 12 ref
Original Material:
INIST-CNRS
Document Type:
Fachzeitschrift Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, University of Victoria, Victoria, BC V8W-3P6, Canada
Department of Computer Science, University of Victoria, Victoria, BC V8W-3P6, Canada
ISSN:
0895-4801
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.16597345
Database:
PASCAL Archive

Weitere Informationen

Let α be a string over an alphabet that is a finite ring, R. The kth elementary symmetric function evaluated at a is denoted Tk(α). In a companion paper we studied the properties of SR(n; τ1, τ2,..., τk) the set of length n strings for which Ti(α) = τi. Here we consider the set, LR(n;τ1,τ2,...,τk), of equivalence classes under rotation of aperiodic strings in SR(n;τ1,τ2,...,τk), sometimes called Lyndon words. General formulae are established and then refined for the cases where R is the ring of integers Zq or the finite field Fq.