Treffer: Towards very high-order accurate schemes for unsteady convection problems on unstructured meshes
Title:
Towards very high-order accurate schemes for unsteady convection problems on unstructured meshes
Authors:
Source:
8th ICFD Conference on Numerical Methods for Fluid Dynamics: Part 1International journal for numerical methods in fluids. 47(8-9):679-691
Publisher Information:
Chichester: Wiley, 2005.
Publication Year:
2005
Physical Description:
print, 5 ref
Original Material:
INIST-CNRS
Subject Terms:
Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des fluides, Fluid dynamics, Méthodes de calcul en mécanique des fluides, Computational methods in fluid dynamics, Equation Burgers, Burgers equation, Espace temps, Space-time, Génération maille, Mesh generation, Interpolation, Mécanique fluide numérique, Computational fluid dynamics, Méthode décomposition, Decomposition method, Método descomposición, Simulation numérique, Digital simulation, Système hyperbolique, Hyperbolic system, Sistema hiperbólico, fluctuation splitting schemes, hyperbolic problems, residual-distribution schemes, unstructured meshes
Document Type:
Konferenz
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institut Universitaire de France, France
Mathématiques Appliquées de Bordeaux, Université Bordeaux 1, 351 cours de la Liberation, 33405 Talence, France
Mathématiques Appliquées de Bordeaux, Université Bordeaux 1, 351 cours de la Liberation, 33405 Talence, France
ISSN:
0271-2091
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: fluid mechanics
Accession Number:
edscal.16671767
Database:
PASCAL Archive
Weitere Informationen
We construct several high-order residual-distribution methods for two-dimensional unsteady scalar advection on triangular unstructured meshes. For the first class of methods, we interpolate the solution in the space-time element. We start by calculating the first-order node residuals, then we calculate the high-order cell residual, and modify the first-order residuals to obtain high accuracy. For the second class of methods, we interpolate the solution in space only, and use high-order finite difference approximation for the time derivative. In doing so, we arrive at a multistep residual-distribution scheme. We illustrate the performance of both methods on several standard test problems.