Treffer: Towards very high-order accurate schemes for unsteady convection problems on unstructured meshes

Title:
Towards very high-order accurate schemes for unsteady convection problems on unstructured meshes
Source:
8th ICFD Conference on Numerical Methods for Fluid Dynamics: Part 1International journal for numerical methods in fluids. 47(8-9):679-691
Publisher Information:
Chichester: Wiley, 2005.
Publication Year:
2005
Physical Description:
print, 5 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institut Universitaire de France, France
Mathématiques Appliquées de Bordeaux, Université Bordeaux 1, 351 cours de la Liberation, 33405 Talence, France
ISSN:
0271-2091
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: fluid mechanics
Accession Number:
edscal.16671767
Database:
PASCAL Archive

Weitere Informationen

We construct several high-order residual-distribution methods for two-dimensional unsteady scalar advection on triangular unstructured meshes. For the first class of methods, we interpolate the solution in the space-time element. We start by calculating the first-order node residuals, then we calculate the high-order cell residual, and modify the first-order residuals to obtain high accuracy. For the second class of methods, we interpolate the solution in space only, and use high-order finite difference approximation for the time derivative. In doing so, we arrive at a multistep residual-distribution scheme. We illustrate the performance of both methods on several standard test problems.