Treffer: Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations : rigorous reduced-basis a posteriori error bounds

Title:
Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations : rigorous reduced-basis a posteriori error bounds
Source:
8th ICFD Conference on Numerical Methods for Fluid Dynamics: Part 1International journal for numerical methods in fluids. 47(8-9):773-788
Publisher Information:
Chichester: Wiley, 2005.
Publication Year:
2005
Physical Description:
print, 25 ref
Original Material:
INIST-CNRS
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mechanical Eughicering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 3-266, Cambridge, MA 02139, United States
ISSN:
0271-2091
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: fluid mechanics
Accession Number:
edscal.16671773
Database:
PASCAL Archive

Weitere Informationen

We present a technique for the evaluation of linear-functional outputs of parametrized elliptic partial differential equations in the context of deployed (in service) systems. Deployed systems require real-time and certified output prediction in support of immediate and safe (feasible) action. The two essential components of our approach are (i) rapidly, uniformly convergent reduced-basis approximations, and (ii) associated rigorous and sharp a posteriori error bounds; in both components we exploit affine parametric structure and oflline-online computational decompositions to provide real-time deployed response. In this paper we extend our methodology to the parametrized steady incompressible Navier-Stokes equations. We invoke the Brezzi-Rappaz-Raviart theory for analysis of variational approximations of non-linear partial differential equations to construct rigorous, quantitative, sharp, inexpensive a posteriori error estimators.